sql >> Databáze >  >> NoSQL >> MongoDB

mongodb seskupit hodnoty podle více polí

Shrnutí TLDR

V moderních verzích MongoDB to můžete brutálně vynutit pomocí $slice těsně mimo výsledek základní agregace. Pro „velké“ výsledky spusťte místo toho paralelní dotazy pro každé seskupení (výpis ukázky je na konci odpovědi) nebo počkejte, až se SERVER-9377 vyřeší, což by umožnilo „omezení“ počtu položek do $push do pole.

db.books.aggregate([
    { "$group": {
        "_id": {
            "addr": "$addr",
            "book": "$book"
        },
        "bookCount": { "$sum": 1 }
    }},
    { "$group": {
        "_id": "$_id.addr",
        "books": { 
            "$push": { 
                "book": "$_id.book",
                "count": "$bookCount"
            },
        },
        "count": { "$sum": "$bookCount" }
    }},
    { "$sort": { "count": -1 } },
    { "$limit": 2 },
    { "$project": {
        "books": { "$slice": [ "$books", 2 ] },
        "count": 1
    }}
])

Náhled MongoDB 3.6

Stále není vyřešen SERVER-9377, ale v této verzi $lookup umožňuje novou "nekorelovanou" volbu, která přebírá "potrubí" výraz jako argument namísto "localFields" a "foreignFields" možnosti. To pak umožňuje "vlastní spojení" s jiným výrazem potrubí, ve kterém můžeme použít $limit aby se vrátily výsledky „top-n“.

db.books.aggregate([
  { "$group": {
    "_id": "$addr",
    "count": { "$sum": 1 }
  }},
  { "$sort": { "count": -1 } },
  { "$limit": 2 },
  { "$lookup": {
    "from": "books",
    "let": {
      "addr": "$_id"
    },
    "pipeline": [
      { "$match": { 
        "$expr": { "$eq": [ "$addr", "$$addr"] }
      }},
      { "$group": {
        "_id": "$book",
        "count": { "$sum": 1 }
      }},
      { "$sort": { "count": -1  } },
      { "$limit": 2 }
    ],
    "as": "books"
  }}
])

Dalším doplňkem je samozřejmě možnost interpolace proměnné pomocí $expr pomocí $match k výběru odpovídajících položek v "spojení", ale obecným předpokladem je "potrubí v potrubí", kde lze vnitřní obsah filtrovat podle shod z nadřazeného prvku. Protože jsou samy o sobě "potrubí", můžeme $limit každý výsledek zvlášť.

Toto by byla další nejlepší možnost spouštění paralelních dotazů a ve skutečnosti by bylo lepší, kdyby $match bylo povoleno a schopné používat index ve zpracování "sub-pipeline". Což tedy nepoužívá "limit to $push "jak se ptá odkazovaný problém, ve skutečnosti přináší něco, co by mělo fungovat lépe."

Původní obsah

Zdá se, že jste narazili na hlavní problém "N". Svým způsobem je váš problém poměrně snadno řešitelný, i když ne s přesným omezením, které požadujete:

db.books.aggregate([
    { "$group": {
        "_id": {
            "addr": "$addr",
            "book": "$book"
        },
        "bookCount": { "$sum": 1 }
    }},
    { "$group": {
        "_id": "$_id.addr",
        "books": { 
            "$push": { 
                "book": "$_id.book",
                "count": "$bookCount"
            },
        },
        "count": { "$sum": "$bookCount" }
    }},
    { "$sort": { "count": -1 } },
    { "$limit": 2 }
])

To vám dá výsledek jako tento:

{
    "result" : [
            {
                    "_id" : "address1",
                    "books" : [
                            {
                                    "book" : "book4",
                                    "count" : 1
                            },
                            {
                                    "book" : "book5",
                                    "count" : 1
                            },
                            {
                                    "book" : "book1",
                                    "count" : 3
                            }
                    ],
                    "count" : 5
            },
            {
                    "_id" : "address2",
                    "books" : [
                            {
                                    "book" : "book5",
                                    "count" : 1
                            },
                            {
                                    "book" : "book1",
                                    "count" : 2
                            }
                    ],
                    "count" : 3
            }
    ],
    "ok" : 1
}

Takže toto se liší od toho, na co se ptáte, v tom, že i když dostáváme nejlepší výsledky pro hodnoty adres, základní výběr „knih“ není omezen pouze na požadované množství výsledků.

Ukazuje se, že je to velmi obtížné, ale lze to provést, i když složitost se zvyšuje s počtem položek, které musíte sladit. Abychom to zjednodušili, můžeme to ponechat na maximálně 2 shodách:

db.books.aggregate([
    { "$group": {
        "_id": {
            "addr": "$addr",
            "book": "$book"
        },
        "bookCount": { "$sum": 1 }
    }},
    { "$group": {
        "_id": "$_id.addr",
        "books": { 
            "$push": { 
                "book": "$_id.book",
                "count": "$bookCount"
            },
        },
        "count": { "$sum": "$bookCount" }
    }},
    { "$sort": { "count": -1 } },
    { "$limit": 2 },
    { "$unwind": "$books" },
    { "$sort": { "count": 1, "books.count": -1 } },
    { "$group": {
        "_id": "$_id",
        "books": { "$push": "$books" },
        "count": { "$first": "$count" }
    }},
    { "$project": {
        "_id": {
            "_id": "$_id",
            "books": "$books",
            "count": "$count"
        },
        "newBooks": "$books"
    }},
    { "$unwind": "$newBooks" },
    { "$group": {
      "_id": "$_id",
      "num1": { "$first": "$newBooks" }
    }},
    { "$project": {
        "_id": "$_id",
        "newBooks": "$_id.books",
        "num1": 1
    }},
    { "$unwind": "$newBooks" },
    { "$project": {
        "_id": "$_id",
        "num1": 1,
        "newBooks": 1,
        "seen": { "$eq": [
            "$num1",
            "$newBooks"
        ]}
    }},
    { "$match": { "seen": false } },
    { "$group":{
        "_id": "$_id._id",
        "num1": { "$first": "$num1" },
        "num2": { "$first": "$newBooks" },
        "count": { "$first": "$_id.count" }
    }},
    { "$project": {
        "num1": 1,
        "num2": 1,
        "count": 1,
        "type": { "$cond": [ 1, [true,false],0 ] }
    }},
    { "$unwind": "$type" },
    { "$project": {
        "books": { "$cond": [
            "$type",
            "$num1",
            "$num2"
        ]},
        "count": 1
    }},
    { "$group": {
        "_id": "$_id",
        "count": { "$first": "$count" },
        "books": { "$push": "$books" }
    }},
    { "$sort": { "count": -1 } }
])

To vám ve skutečnosti poskytne 2 nejlepší „knihy“ z prvních dvou položek „adresy“.

Ale za moje peníze zůstaňte u prvního formuláře a poté jednoduše „rozkrájejte“ prvky pole, které se vrátí, aby převzaly prvních „N“ prvků.

Demonstrační kód

Demonstrační kód je vhodný pro použití s ​​aktuálními verzemi LTS NodeJS z vydání v8.xa v10.x. To je většinou pro async/await syntaxe, ale v obecném toku není nic, co by mělo takové omezení a přizpůsobilo se s malými změnami prostým slibům nebo dokonce zpět k prosté implementaci zpětného volání.

index.js

const { MongoClient } = require('mongodb');
const fs = require('mz/fs');

const uri = 'mongodb://localhost:27017';

const log = data => console.log(JSON.stringify(data, undefined, 2));

(async function() {

  try {
    const client = await MongoClient.connect(uri);

    const db = client.db('bookDemo');
    const books = db.collection('books');

    let { version } = await db.command({ buildInfo: 1 });
    version = parseFloat(version.match(new RegExp(/(?:(?!-).)*/))[0]);

    // Clear and load books
    await books.deleteMany({});

    await books.insertMany(
      (await fs.readFile('books.json'))
        .toString()
        .replace(/\n$/,"")
        .split("\n")
        .map(JSON.parse)
    );

    if ( version >= 3.6 ) {

    // Non-correlated pipeline with limits
      let result = await books.aggregate([
        { "$group": {
          "_id": "$addr",
          "count": { "$sum": 1 }
        }},
        { "$sort": { "count": -1 } },
        { "$limit": 2 },
        { "$lookup": {
          "from": "books",
          "as": "books",
          "let": { "addr": "$_id" },
          "pipeline": [
            { "$match": {
              "$expr": { "$eq": [ "$addr", "$$addr" ] }
            }},
            { "$group": {
              "_id": "$book",
              "count": { "$sum": 1 },
            }},
            { "$sort": { "count": -1 } },
            { "$limit": 2 }
          ]
        }}
      ]).toArray();

      log({ result });
    }

    // Serial result procesing with parallel fetch

    // First get top addr items
    let topaddr = await books.aggregate([
      { "$group": {
        "_id": "$addr",
        "count": { "$sum": 1 }
      }},
      { "$sort": { "count": -1 } },
      { "$limit": 2 }
    ]).toArray();

    // Run parallel top books for each addr
    let topbooks = await Promise.all(
      topaddr.map(({ _id: addr }) =>
        books.aggregate([
          { "$match": { addr } },
          { "$group": {
            "_id": "$book",
            "count": { "$sum": 1 }
          }},
          { "$sort": { "count": -1 } },
          { "$limit": 2 }
        ]).toArray()
      )
    );

    // Merge output
    topaddr = topaddr.map((d,i) => ({ ...d, books: topbooks[i] }));
    log({ topaddr });

    client.close();

  } catch(e) {
    console.error(e)
  } finally {
    process.exit()
  }

})()

books.json

{ "addr": "address1",  "book": "book1"  }
{ "addr": "address2",  "book": "book1"  }
{ "addr": "address1",  "book": "book5"  }
{ "addr": "address3",  "book": "book9"  }
{ "addr": "address2",  "book": "book5"  }
{ "addr": "address2",  "book": "book1"  }
{ "addr": "address1",  "book": "book1"  }
{ "addr": "address15", "book": "book1"  }
{ "addr": "address9",  "book": "book99" }
{ "addr": "address90", "book": "book33" }
{ "addr": "address4",  "book": "book3"  }
{ "addr": "address5",  "book": "book1"  }
{ "addr": "address77", "book": "book11" }
{ "addr": "address1",  "book": "book1"  }


  1. Čtení dat z Redis na Flink

  2. Neznámý příkaz Redis ERR 'FLUSHDB'

  3. Jak převést z datového typu řetězec na datum?

  4. Jak mohu implementovat oprávnění na úrovni pole pro MongoDB?