sql >> Databáze >  >> NoSQL >> MongoDB

Dotaz na odpovídající data v rámci pole

Chybí vám $elemMatch operátor na základní dotaz a $filter jste se pokusili s agregačním rámcem ve skutečnosti má nesprávnou syntaxi.

Takže vrácení dokumentu, který odpovídá datům v tomto rozsahu v poli, je:

// Simulating the date values
var start = new Date("2018-06-01"); // otherwise new Date(req.params.start)
var end = new Date("2018-07-01");   // otherwise new Date(req.params.end)

myColl.find({ 
  "_id": req.params.id,
  "someArray": {
    "$elemMatch": {  "$gte": start, "$lt": end  }
  }
}).then( doc => {
  // do something with matched document
}).catch(e => { console.err(e); res.send(e); })

Filtrování skutečných prvků pole, které mají být vráceny, je:

// Simulating the date values
var start = new Date("2018-06-01");
var end = new Date("2018-07-01");

myColl.aggregate([
  { "$match": { 
    "_id": mongoose.Types.ObjectId(req.params.id),
    "someArray": {
      "$elemMatch": { "$gte": start, "$lt": end }
    }
  }},
  { "$project": {
    "name": 1,
    "someArray": {
      "$filter": {
        "input": "$someArray",
        "cond": {
          "$and": [
            { "$gte": [ "$$this.Timestamp", start ] }
            { "$lt": [ "$$this.Timestamp", end ] }
          ]
        }
      }
    }
  }}
]).then( docs => {
  /* remember aggregate returns an array always, so if you expect only one
   * then it's index 0
   *
   * But now the only items in 'someArray` are the matching ones, so you don't need 
   * the code you were writing to just pull out the matching ones
   */
   console.log(docs[0].someArray);
  
}).catch(e => { console.err(e); res.send(e); })

Je třeba si uvědomit, že v aggregate() musíte skutečně "obsadit" ObjectId hodnotu, protože Mongoose "autocasting" zde nefunguje. Obvykle mongoose čte ze schématu, aby určil, jak přetypovat data, ale protože agregační kanály „mění věci“, pak se to nestane.

$elemMatch je tam proto, že jak uvádí dokumentace :

Ve zkratce $gte a $lt jsou podmínkou AND a počítají se jako "dvě", proto se nepoužije jednoduchý "tečkový zápis". Je to také $lt a ne $lte , protože dává větší smysl být „méně než“ „následující den“, než hledat rovnost až do „poslední milisekundy“.

$filter samozřejmě dělá přesně to, co jeho název napovídá, a "filtruje" skutečný obsah pole tak, aby zůstaly pouze odpovídající položky.

Ukázka

Úplný demonstrační výpis vytvoří dva dokumenty, z nichž jeden má pouze dvě položky pole, které skutečně odpovídají časovému období. První dotaz ukazuje, že správný dokument odpovídá rozsahu. Druhý ukazuje "filtrování" pole:

const { Schema, Types: { ObjectId } } = mongoose = require('mongoose');

const uri = 'mongodb://localhost/test';

mongoose.Promise = global.Promise;
mongoose.set('debug',true);

const subSchema = new Schema({
  timestamp: Date,
  other: String
});

const testSchema = new Schema({
  name: String,
  someArray: [subSchema]
});

const Test = mongoose.model('Test', testSchema, 'filtertest');

const log = data => console.log(JSON.stringify(data, undefined, 2));

const startDate = new Date("2018-06-01");
const endDate = new Date("2018-07-01");

(function() {

  mongoose.connect(uri)
    .then(conn =>
      Promise.all(Object.entries(conn.models).map(([k,m]) => m.remove()))
    )
    .then(() =>
      Test.insertMany([
        {
          _id: "5b1522f5cdac0b6da18f7618",
          name: 'A',
          someArray: [
            { timestamp: new Date("2018-06-01"), other: "C" },
            { timestamp: new Date("2018-07-04"), other: "D" },
            { timestamp: new Date("2018-06-10"), other: "E" }
          ]
        },
        {
          _id: "5b1522f5cdac0b6da18f761c",
          name: 'B',
          someArray: [
            { timestamp: new Date("2018-07-04"), other: "D" },
          ]
        }
      ])
    )
    .then(() =>
      Test.find({
        "someArray": {
          "$elemMatch": {
            "timestamp": { "$gte": startDate, "$lt": endDate }
          }
        }
      }).then(docs => log({ docs }))
    )
    .then(() =>
      Test.aggregate([
        { "$match": {
          "_id": ObjectId("5b1522f5cdac0b6da18f7618"),
          "someArray": {
            "$elemMatch": {
              "timestamp": { "$gte": startDate, "$lt": endDate }
            }
          }
        }},
        { "$addFields": {
          "someArray": {
            "$filter": {
              "input": "$someArray",
              "cond": {
                "$and": [
                  { "$gte": [ "$$this.timestamp", startDate ] },
                  { "$lt": [ "$$this.timestamp", endDate ] }
                ]
              }
            }
          }
        }}
      ]).then( filtered => log({ filtered }))
    )
    .catch(e => console.error(e))
    .then(() => mongoose.disconnect());

})()

Nebo trochu modernější s async/await syntaxe:

const { Schema, Types: { ObjectId } } = mongoose = require('mongoose');

const uri = 'mongodb://localhost/test';

mongoose.Promise = global.Promise;
mongoose.set('debug',true);

const subSchema = new Schema({
  timestamp: Date,
  other: String
});

const testSchema = new Schema({
  name: String,
  someArray: [subSchema]
});

const Test = mongoose.model('Test', testSchema, 'filtertest');

const log = data => console.log(JSON.stringify(data, undefined, 2));

(async function() {

  try {

    const startDate = new Date("2018-06-01");
    const endDate = new Date("2018-07-01");

    const conn = await mongoose.connect(uri);

    // Clean collections
    await Promise.all(Object.entries(conn.models).map(([k,m]) => m.remove()));

    // Create test items

    await Test.insertMany([
      {
        _id: "5b1522f5cdac0b6da18f7618",
        name: 'A',
        someArray: [
          { timestamp: new Date("2018-06-01"), other: "C" },
          { timestamp: new Date("2018-07-04"), other: "D" },
          { timestamp: new Date("2018-06-10"), other: "E" }
        ]
      },
      {
        _id: "5b1522f5cdac0b6da18f761c",
        name: 'B',
        someArray: [
          { timestamp: new Date("2018-07-04"), other: "D" },
        ]
      }
    ]);



    // Select matching 'documents'
    let docs = await Test.find({
      "someArray": {
        "$elemMatch": {
          "timestamp": { "$gte": startDate, "$lt": endDate }
        }
      }
    });
    log({ docs });

    let filtered = await Test.aggregate([
      { "$match": {
        "_id": ObjectId("5b1522f5cdac0b6da18f7618"),
        "someArray": {
          "$elemMatch": {
            "timestamp": { "$gte": startDate, "$lt": endDate }
          }
        }
      }},
      { "$addFields": {
        "someArray": {
          "$filter": {
            "input": "$someArray",
            "cond": {
              "$and": [
                { "$gte": [ "$$this.timestamp", startDate ] },
                { "$lt": [ "$$this.timestamp", endDate ] }
              ]
            }
          }
        }
      }}
    ]);
    log({ filtered });

    mongoose.disconnect();

  } catch(e) {
    console.error(e)
  } finally {
    process.exit()
  }

})()

Oba jsou stejné a poskytují stejný výstup:

Mongoose: filtertest.remove({}, {})
Mongoose: filtertest.insertMany([ { _id: 5b1522f5cdac0b6da18f7618, name: 'A', someArray: [ { _id: 5b1526952794447083ababf6, timestamp: 2018-06-01T00:00:00.000Z, other: 'C' }, { _id: 5b1526952794447083ababf5, timestamp: 2018-07-04T00:00:00.000Z, other: 'D' }, { _id: 5b1526952794447083ababf4, timestamp: 2018-06-10T00:00:00.000Z, other: 'E' } ], __v: 0 }, { _id: 5b1522f5cdac0b6da18f761c, name: 'B', someArray: [ { _id: 5b1526952794447083ababf8, timestamp: 2018-07-04T00:00:00.000Z, other: 'D' } ], __v: 0 } ], {})
Mongoose: filtertest.find({ someArray: { '$elemMatch': { timestamp: { '$gte': new Date("Fri, 01 Jun 2018 00:00:00 GMT"), '$lt': new Date("Sun, 01 Jul 2018 00:00:00 GMT") } } } }, { fields: {} })
{
  "docs": [
    {
      "_id": "5b1522f5cdac0b6da18f7618",
      "name": "A",
      "someArray": [
        {
          "_id": "5b1526952794447083ababf6",
          "timestamp": "2018-06-01T00:00:00.000Z",
          "other": "C"
        },
        {
          "_id": "5b1526952794447083ababf5",
          "timestamp": "2018-07-04T00:00:00.000Z",
          "other": "D"
        },
        {
          "_id": "5b1526952794447083ababf4",
          "timestamp": "2018-06-10T00:00:00.000Z",
          "other": "E"
        }
      ],
      "__v": 0
    }
  ]
}
Mongoose: filtertest.aggregate([ { '$match': { _id: 5b1522f5cdac0b6da18f7618, someArray: { '$elemMatch': { timestamp: { '$gte': 2018-06-01T00:00:00.000Z, '$lt': 2018-07-01T00:00:00.000Z } } } } }, { '$addFields': { someArray: { '$filter': { input: '$someArray', cond: { '$and': [ { '$gte': [ '$$this.timestamp', 2018-06-01T00:00:00.000Z ] }, { '$lt': [ '$$this.timestamp', 2018-07-01T00:00:00.000Z ] } ] } } } } } ], {})
{
  "filtered": [
    {
      "_id": "5b1522f5cdac0b6da18f7618",
      "name": "A",
      "someArray": [
        {
          "_id": "5b1526952794447083ababf6",
          "timestamp": "2018-06-01T00:00:00.000Z",
          "other": "C"
        },
        {
          "_id": "5b1526952794447083ababf4",
          "timestamp": "2018-06-10T00:00:00.000Z",
          "other": "E"
        }
      ],
      "__v": 0
    }
  ]
}



  1. PyMongo se špatně chová s čísly s plovoucí desetinnou čárkou

  2. MongoDB Zobrazit veškerý obsah ze všech kolekcí

  3. Jak aktualizujete více polí pomocí Update.Set v MongoDB pomocí oficiálního ovladače c#?

  4. Migrace MongoDB na DynamoDB, část 2