sql >> Databáze >  >> RDS >> Mysql

Jak vytvořit hybridní metodu, která počítá počet záznamů za posledních X dní?

Níže je (téměř) úplný fragment kódu:

# ... omitted import statements and session configuration

def _date(date_str):
    return datetime.strptime(date_str, "%Y-%m-%d")


class Match(Base):
    __tablename__ = "match"

    match_id = Column(Integer, primary_key=True)
    date = Column(Date, nullable=False)

    @hybrid_method
    def match_count(self, timespan_days):
        cut_off = self.date - timedelta(days=timespan_days)
        sess = object_session(self)
        M = Match
        q = (
            sess.query(M)
            # .filter(M.match_id != self.match_id)  # option-1: only other on the same day
            .filter(M.match_id < self.match_id)  # option-2: only smaller-id on the same day (as in OP)
            .filter(M.date <= self.date)
            .filter(M.date >= cut_off)
        )
        return q.count()

    @match_count.expression
    def match_count(cls, timespan_days):
        M = aliased(Match, name="other")
        cut_off = cls.date - timespan_days
        q = (
            select([func.count(M.match_id)])
            # .filter(Match.match_id != self.match_id)  # option-1: only other on the same day
            .where(M.match_id < cls.match_id)  # option-2: only smaller-id on the same day (as in OP)
            .where(M.date <= cls.date)
            .where(M.date >= cut_off)
        )
        return q.label("match_count")


def test():
    Base.metadata.drop_all()
    Base.metadata.create_all()

    from sys import version_info as py_version
    from sqlalchemy import __version__ as sa_version

    print(f"PY version={py_version}")
    print(f"SA version={sa_version}")
    print(f"SA engine={engine.name}")
    print("=" * 80)

    # 1. test data
    matches = [
        Match(date=_date("2020-01-01")),
        Match(date=_date("2020-01-02")),
        Match(date=_date("2020-01-03")),
        Match(date=_date("2020-01-05")),
        Match(date=_date("2020-01-05")),
        Match(date=_date("2020-01-10")),
    ]
    session.add_all(matches)
    session.commit()
    print("=" * 80)

    # 2. test query in "in-memory"
    for m in session.query(Match):
        print(m, m.match_count(3))
    print("=" * 80)

    # 3. test query on "SQL"
    session.expunge_all()
    q = session.query(Match, Match.match_count(3))
    for match, match_count in q:
        print(match, match_count)
    print("=" * 80)


if __name__ == "__main__":
    test()

Výše uvedený kód vytváří následující výstup:

============================================================
PY version=sys.version_info(major=3, minor=8, micro=1, releaselevel='final', serial=0)
SA version=1.3.20
SA engine=postgresql
============================================================
<Match(date=datetime.date(2020, 1, 1), match_id=1)> 0
<Match(date=datetime.date(2020, 1, 2), match_id=2)> 1
<Match(date=datetime.date(2020, 1, 3), match_id=3)> 2
<Match(date=datetime.date(2020, 1, 5), match_id=4)> 2
<Match(date=datetime.date(2020, 1, 5), match_id=5)> 3
<Match(date=datetime.date(2020, 1, 10), match_id=6)> 0
============================================================
<Match(date=datetime.date(2020, 1, 1), match_id=1)> 0
<Match(date=datetime.date(2020, 1, 2), match_id=2)> 1
<Match(date=datetime.date(2020, 1, 3), match_id=3)> 2
<Match(date=datetime.date(2020, 1, 5), match_id=4)> 2
<Match(date=datetime.date(2020, 1, 5), match_id=5)> 3
<Match(date=datetime.date(2020, 1, 10), match_id=6)> 0
============================================================

zatímco dotaz q by rád níže (v postgresql ):

SELECT match.match_id,
       match.date,

  (SELECT count(other.match_id) AS count_1
   FROM match AS other
   WHERE other.match_id < match.match_id
     AND other.date <= match.date
     AND other.date >= match.date - %(date_1)s) AS match_count
FROM match

Jedna věc, na kterou bych rád upozornil, je, že kontrola "v paměti" není příliš efektivní, protože je nutné dotazovat databázi na každou Match instance. Proto bych pokud možno použil poslední dotaz.




  1. Jak opravit chybějící pole v křížovém dotazu v Accessu

  2. Jak dosáhnout výchozí hodnoty, pokud je hodnota sloupce NULL?

  3. KNIME

  4. Spuštění a naplnění kontejneru Postgres v Dockeru